CAD/CAM dentistry and the laboratory technician: Partners in success

By Lee Culp, USA

The concept of digital dentistry is one that started out small and has progressively increased in momentum until its boundaries appear to have become endless. New technologies in dentistry will only be successful if they are combined with a complete understanding of basic comprehensive dentistry.

While new technology and computerization can make procedures more efficient, less labor-intensive and more consistent, it will not replace education, practical experience and clinical/technical judgment. The most exciting factor surrounding these technologies is not, however, only in the potential applications of the technology that are being hypothesized by dental professionals. The excitement truly lies in the fact that these “hypothetical” applications are currently being developed today, and some are even in the final stages.

In a relatively short time period, digital technology will revolutionize the quality of dental care that is being delivered in modern practice. Implants are now well documented for fulfilling the functional requirements in prosthetic tooth replacement. These new technologies, along with the evolution of surgical and prosthetic techniques, allow the dental team predictable, consistent results in implant rehabilitation. MicroDental is involved as a beta test area for many of these exciting new applications. While new technology and computerization can make procedures more efficient, less labor-intensive and more consistent, it will not replace education, practical experience and clinical/technical judgment.

The evolution from hand waxing to “digital waxing” using the diagnostic wax-up and provisional restorations, as well as their digital replicas to guide us in the creation of CAD/CAM restorations, will be presented. The utilization of these new technologies, along with the evolution from “hand” design to “digital” design, is being delivered in modern dentistry.

The most exciting factor surrounding these technologies is not, however, only in the potential applications of the technology that are being hypothesized by dental professionals. The excitement truly lies in the fact that these “hypothetical” applications are currently being developed today, and some are even in the final stages.

In a relatively short time period, digital technology will revolutionize the quality of dental care that is being delivered in modern practice. Implants are now well documented for fulfilling the functional requirements in prosthetic tooth replacement. These new technologies, along with the evolution of surgical and prosthetic techniques, allow the dental team predictable, consistent results in implant rehabilitation. MicroDental is involved as a beta test area for many of these new technologies. As dentistry evolves into the digital world, the successful incorporation of computerization and new technology will continue to provide more efficient methods of communication and fabrication, while at the same time retaining the individual creativity and artistry of the skilled dentist and dental technician. The utilization of new technology will be enhanced by a close cooperation and working relationship of the dentist/technician team. The evolution from hand waxing to “digital waxing” using the diagnostic wax-up and provisional restorations, as well as their digital replicas to guide us in the creation of CAD/CAM restorations, will be presented. The utilization of these new technologies, along with the evolution from “hand” design to “digital” design, is being delivered in modern dentistry.

Leading dental companies form KaVo Kerr Group

By Dental Tribune International

Chicago & Washington, USA: Yesterday, Henk van Duijnoven, senior vice president of Danaher Corp., a U.S. umbrella corporation encompassing brands from various industries, announced the formation of KaVo Kerr Group.

The group strategically unites leading dental consumable, equipment, high-tech and specialty brands under one platform.

“The formation of KaVo Kerr Group enables us to better serve dental professionals and healthcare providers who purchase dental products,” said van Duijnoven, senior vice president of Danaher Corp.

Handing over ceremony

By International College of Dentists

This was a historic moment for Section X with the handing over of the presidency taking place for the first time outside Lebanon. The meeting took place in Dubai at the Fairmont Hotel on February 4th in the presence of fellows from both districts and guests. The event was sponsored by CARE and Planning.

mCME

Page 6 Clinical and diagnostic advantages of PreXion 3-D imaging system

Page 8 Clinical digital photography, Part I: Equipment and basic documentation

ORTHO TRIBUNE

Page 26 Invisalign®: clear benefits for your patients

By Vicki Vlaskalic BDSc; MDSc

ENDO TRIBUNE

Page 40 Biological and conservative root canal instrumentation with BT-Race file system

By Durs Gilberto Debeilhan & Martin Trope

CLINICAL

Page 40 Case presentation: OptiBond™ XTR

Page 18 Two phase treatment of a Class II division 1 patient complicated by traumatic upper incisor intrusion: A Case Report

LAB TRIBUNE

Page 12 Mr. Kaufmann explains the advantages of KaVo’s new ARCTICA CAD/CAM system

Page 14 The Inman Aligner: A progressive approach to smile design - Part 2
Brilliant technology for diagnostics: KaVo DIAGNOcam: A new look at caries

By KaVo

With the introduction of the caries diagnosis device DIAGNOdent 15 years ago and more than 60,000 devices sold, KaVo has set a new standard in caries detection. We are now combining this great success with the new DIAGNOCam and is thereby setting new standards in caries diagnostics. The new KaVo DIAGNOCam is the first camera system that uses the tool's structure to verify caries diagnosis. To do this, the tooth is transilluminated utilizing light of a specific wavelength and used like a light conductor. A digital video camera records the image and displays it live on a computer screen. Curious lesions are displayed as dark shadows. The images recorded by the KaVo DIAGNOCam can be stored, thus significantly simplifying monitoring and patient communication.

With its DIFOTI technology (Digital Imaging Fiberoptic Transillumination), DIAGNOCam offers high diagnostic safety which is comparable or superior to X-ray diagnosis in many cases, in particular with regard to proximal and occlusal caries. Furthermore, it is possible to show certain kinds of secondary caries and cracks. The X-ray free device thereby allows early and very gentle caries detection. Compared to other methods, the clinical significance is not distorted through plaque deposits.

Because of its easy handling, the device can quickly be integrated in existing routines, thereby resulting in a distinct added value in terms of patient motivation and information. Experience the next generation of caries detection with the KaVo DIAGNOCam.
Elegant design and easy handling are a winning combination.

CEREC OMNICAM
THE EVOLUTION OF SIMPLICITY

The new CEREC Omnicam combines powder-free ease of handling and natural color reproduction to provide an inspiring treatment experience. Discover the new simplicity of digital dentistry – exemplified by Sirona’s premium camera portfolio: CEREC Omnicam and CEREC Bluecam. Enjoy every day. With Sirona.

UNRIVALLED HANDLING ■ POWDER-FREE ■ SCANNING IN NATURAL COLOR

Dubai Contact: SIRONA Dental Systems Ltd · Dr Amro Adel · Building 49, Suite 304 Dubai Healthcare City · Telephone: + 971 4 375 2355 · E-Mail: amro.adel@sirona.com
Kuwait Contact: SIRONA Dental Systems GmbH · Dr. Mostafa Al.Khouly
Office: + 965 2 224 6063 · Mobile: + 965 9 800 2225

sirona.com
Saliva and Oral Health

By Michael Edgar, Colin Dawes & Denis O’Mullane and contributed to by C. Dawes

Excerpt from Saliva and Oral Health - An Essential Overview for the Healthcare Professional, 2012

The presence of saliva is vital to the maintenance of healthy hard (teeth) and soft (mucosa) oral tissues. Severe reduction of salivary output not only results in a rapid deterioration of oral health but also has a detrimental impact on the quality of life for the sufferer.

An understanding of saliva and its role in oral health helps to promote awareness among oral health care professionals of the problems arising when the quantity or quality of saliva is decreased; this awareness and understanding is important to the prevention, early diagnosis and treatment of the condition. There is an extensive body of research on saliva as a diagnostic fluid. It has been used to indicate an individual’s susceptibility to developing caries; it has also been used to reflect systemic physiological and pathological changes which are mirrored in saliva. One of the major benefits of saliva as a diagnostic fluid is that it is easily available for non-invasive collection and analysis. It can be used to monitor the presence and levels of hormones, drugs, antibodies, microorganisms and ions. Factors Influencing Salivary Flow Rate and Composition

The following article provides an overview of the differences in flow rate and composition between unstimulated saliva (secreted continuously in the absence of exogenous stimulation) and stimulated saliva (secreted usually in response to masticatory or gustatory stimulation), the factors influencing salivary flow rate and composition, and their physiological importance.

Unstimulated saliva

Unstimulated whole saliva is the mixture of secretions found in the mouth in the absence of exogenous stimuli such as masticants or chewing. It is composed of secretions from the parotid, submandibular, sublingual, and minor mucus glands but it also contains gingival crevicular fluid, desquamated epithelial cells, bacteria, leukocytes (mainly from the gingival crevice), and possibly food residues, blood, and viruses.

Several large studies of unstimulated saliva flow rates in healthy individuals have found the average value for whole saliva to be about 0.5–0.4 ml/minute, but the normal range is very large and includes individuals with very low flow rates who do not complain of a dry mouth. Such a broad normal range makes it difficult to say whether or not a particular individual has an abnormally low flow rate. Unless saliva is almost completely absent, patients can be said to have a dry mouth (xerostomia) only on the basis of their subjective symptoms. However, a flow rate of <0.1 ml/min is considered objective evidence of hyposecretion.

Whether the flow rate is high or low is much less important than whether it has changed adversely in a particular individual. Physicians will often take a patient’s blood pressure as a yardstick for future measurements. Dentists, however, do not routinely measure the salivary flow rate, so that when a patient complains of having a dry mouth, it is impossible to judge whether or not a genuine reduction in flow has taken place. It would therefore be very advantageous if dentists included measurement of salivary flow as part of their regular examination. Just as there are individuals with very little saliva but without discomfort, so there are others with flow rates within the normal range who feel that their mouth is drowning in saliva. This problem is often due to difficulty in swallowing, rather than to a genuinely high flow rate. Factors affecting the unstimulated salivary flow rate

• Degree of hydration – This is potentially the most important factor. When body water content is reduced by 8%, the salivary flow rate decreases to virtually zero.

• Body posture – Flow rate varies with position and a person when standing or lying will have a higher or lower flow rate, respectively, than when seated.
A recent study has found that flow rates than males and a lesser degree than maximum gustatory stimulation with citric acid.

Factors affecting the stimulatory response similar to a fresh piece of gum causes a beneficial to those with a dry mouth and may help by causing an increase in the unstimulated flow rate, although further studies of this are needed. A study has shown that two sugar-free chewing gums, one containing chlorhexidine, used by a group of ‘frail’, elderly, dentate subjects over a one-year period, led to improved oral health and a statistically significant 55-100% increase in their stimulated salivary flow rate. This suggests that if the glands are stimulated regularly, their secretory ability may increase. Unfortunately, unstimulated flow rates were not measured in this study.

The composition of saliva

One major role of saliva is the clearance of carbohydrate from the mouth. The more rapid the flow, the faster the carbohydrate is cleared. This is true whether the saliva is unstimulated or stimulated, for example by chewing gum. If the gum contains sweeteners such as xylitol or sorbitol, which are minimally metabolised by plaque bacteria, then the increased salivary flow will be very effective in clearance of cariogenic carbohydrates remaining from previously consumed food.

Factors affecting salivary composition

• Flow rate – The main factor affecting the composition of saliva is the flow rate. As the flow rate increases, the pH and concentrations of some constituents rise (e.g. protein, sodium, chloride, bicarbonate), while those of others fall (e.g. magnesium and phosphate).

• Duration of stimulation – When the salivary flow rate is held constant, the composition of the saliva depends on the duration of stimulation.

The composition of saliva is affected by many factors, such as the type of salivary gland producing the saliva. For example, most of the amylase in saliva is produced by the parotid glands while blood-group substances are derived primarily from the minor mucous glands.

< Page 4

The composition of saliva

The composition of saliva is affected by many factors, such as the type of salivary gland producing the saliva. For example, most of the amylase in saliva is produced by the parotid glands while blood-group substances are derived primarily from the minor mucous glands.

Factors affecting salivary composition

• Flow rate – The main factor affecting the composition of saliva is the flow rate. As the flow rate increases, the pH and concentrations of some constituents rise (e.g. protein, sodium, chloride, bicarbonate), while those of others fall (e.g. magnesium and phosphate).

• Duration of stimulation – When the salivary flow rate is held constant, the composition of the saliva depends on the duration of stimulation.

The composition of saliva is affected by many factors, such as the type of salivary gland producing the saliva. For example, most of the amylase in saliva is produced by the parotid glands while blood-group substances are derived primarily from the minor mucous glands.

Factors affecting salivary composition

• Flow rate – The main factor affecting the composition of saliva is the flow rate. As the flow rate increases, the pH and concentrations of some constituents rise (e.g. protein, sodium, chloride, bicarbonate), while those of others fall (e.g. magnesium and phosphate).

• Duration of stimulation – When the salivary flow rate is held constant, the composition of the saliva depends on the duration of stimulation.

The composition of saliva is affected by many factors, such as the type of salivary gland producing the saliva. For example, most of the amylase in saliva is produced by the parotid glands while blood-group substances are derived primarily from the minor mucous glands.

Factors affecting salivary composition

• Flow rate – The main factor affecting the composition of saliva is the flow rate. As the flow rate increases, the pH and concentrations of some constituents rise (e.g. protein, sodium, chloride, bicarbonate), while those of others fall (e.g. magnesium and phosphate).

• Duration of stimulation – When the salivary flow rate is held constant, the composition of the saliva depends on the duration of stimulation.

The composition of saliva is affected by many factors, such as the type of salivary gland producing the saliva. For example, most of the amylase in saliva is produced by the parotid glands while blood-group substances are derived primarily from the minor mucous glands.

Factors affecting salivary composition

• Flow rate – The main factor affecting the composition of saliva is the flow rate. As the flow rate increases, the pH and concentrations of some constituents rise (e.g. protein, sodium, chloride, bicarbonate), while those of others fall (e.g. magnesium and phosphate).

• Duration of stimulation – When the salivary flow rate is held constant, the composition of the saliva depends on the duration of stimulation.

The composition of saliva is affected by many factors, such as the type of salivary gland producing the saliva. For example, most of the amylase in saliva is produced by the parotid glands while blood-group substances are derived primarily from the minor mucous glands.

Factors affecting salivary composition

• Flow rate – The main factor affecting the composition of saliva is the flow rate. As the flow rate increases, the pH and concentrations of some constituents rise (e.g. protein, sodium, chloride, bicarbonate), while those of others fall (e.g. magnesium and phosphate).

• Duration of stimulation – When the salivary flow rate is held constant, the composition of the saliva depends on the duration of stimulation.

The composition of saliva is affected by many factors, such as the type of salivary gland producing the saliva. For example, most of the amylase in saliva is produced by the parotid glands while blood-group substances are derived primarily from the minor mucous glands.

Factors affecting salivary composition

• Flow rate – The main factor affecting the composition of saliva is the flow rate. As the flow rate increases, the pH and concentrations of some constituents rise (e.g. protein, sodium, chloride, bicarbonate), while those of others fall (e.g. magnesium and phosphate).

• Duration of stimulation – When the salivary flow rate is held constant, the composition of the saliva depends on the duration of stimulation.

The composition of saliva is affected by many factors, such as the type of salivary gland producing the saliva. For example, most of the amylase in saliva is produced by the parotid glands while blood-group substances are derived primarily from the minor mucous glands.
Clinical and diagnostic advantages of PreXion 3-D imaging system

By Dan McEwen, DDS

F or nearly 100 years, dentists have relied on 2-D radiographic imaging for diagnosis and treatment planning. With the 1990 introduction of cone-beam computed tomography (CBCT), all dentists now have tools available for more accurate diagnosis and treatment.1

The ability to look at a tooth in any direction and orientation, as well as in 3-D, eliminates much of the guesswork commonly experienced with 2-D radiographs.

We have been limited in most cases to only a buccal-lingual view provided by periapicals, bitewings and panoramic radiographs with the occasional axial view of an occlusal film. Medical CT scans and stored X-rays on various flat panel screens generated by slices drawn at various directions. This nearly endless ability to view MPR slices of the maxillary sinuses. The MPR view of the CBCT scan allows the dentist to follow all canals imposed on the other (Fig. 9). Often, as viewed in this radiograph, we see a lingual canal exists and is untreated. The coronal MPR reveals a short fill near the apex of the mesial root. The axial view shows the floor of the sinus and any soft-tissue pathology (Fig. 6). Having accurate measurements in all dimensions is an advantage of CBCT scanning.

CBCT and endodontics

Endodontics is a field that is rapidly adopting the use of CBCT and for good reason. The inherent geometric deficiencies of 2-D radiographs make the CBCT scan a valuable adjunct to investigate the root morphology in both 2-D and MPR. The typical periradical will show superimposed canals in the anterior or bicuspids and molars as well as unwanted bone densities both buccal and lingual to the affected tooth making the image quality poor. The ability to view MPR slices in cross-section, long axis and oblique dimensions gives the ability to follow all canals in any direction and show their relationship and measurements to known structures. This virtual tour of the root morphology is a great benefit to the final treatment outcome (Fig. 5).4

Post root-canal infection can be difficult to diagnose with the standard periapical. The endodontic fills may appear to be normal even though other clinical findings and symptoms are abnormal. The patient presents several months after post-root-canal treatment with pain on palpation and pressure and avoids this side of the mouth. A periapical radiograph shows minimal pathology (Fig. 6). The roots appear to be filled and a small puff of sealer extends through the apex of the mesial roots. The distal root structure and fill appear normal. There is little indication of periradical radiolucency only a widening of the periodontal ligaments of the mesial roots. A CBCT scan reveals a completely different picture. The coronal MPR reveals a short fill near the apex of the mesial root lingual and a large radiolucency that is not visible on the periapical radiograph (Fig. 6).

Missed canals are difficult to see in a buccolingual projection of the periapical radiograph as one canal is superimposed on the other (Fig. 9). Often, as viewed in this radiograph, we see a lingual canal exists and is untreated. The coronal view confirms the diagnosis and treatment can be completed (Fig. 10).

Today’s endodontists, as well as general dentists, are benefiting from the diagnostic capabilities of the high-resolution CBCT scanners available over conventional 2-D periapical.14

Oral surgery

Oral surgery, with its inherent invasive nature, can be better served using CBCT with MPR as well as 3-D images. The ability to perform virtual surgery is a benefit to both the doctor and the patient. Doctors have the advantage of seeing morphology and landmarks in real time and space with accurate measurements. Post-operative patients will gain a better understanding of the problems and the solutions their doctors are offering them.

Third-molar extractions can be risky based on 2-D and panoramic radiographs.
These radiographs can often superimpose nerves and sinususes over root structures. Dentists using 2-D radiographs must often rely on experience to assess the risks of iatrogenic trauma. The use of CBCT with MPDs and 3-D images reduces any guessing as well as the chance for any permanent damage to the patient. With the adoption of CBCT, the judgment is based on solid evidence and the risk will decrease.

A panoramic of the superimposed roots may give no solid evidence the canal lies between the roots. It is only with the use of CBCT and the MPDs that the nerve can accurately be seen traversing between the mesial buccal and mesial lingual root (Fig. 11). Other surgical advantages include the exact measurement and the position of supernumerary or impacted teeth. The CBCT images in multiple positions and show definitive morphology that will aid in removal of the proper teeth (Fig. 12). Knowing the exact position of many of these teeth is a benefit to both the doctor and patient. It will lead to the most precise surgical path and the least invasive procedure.

Orthodontics
Orthodontists are beginning to adopt large field-of-view CBCT. Recent studies show that linear measurements of bony structures are more accurate using CBCT and have less distortion than current 2-D methods of measurement: lateral cephalometric, posteroanterior (PA) and submentovertebral (SMVT). Accurate measurements of tooth volume and tooth position can aid in accelerated treatment times and more precise treatment.

Along with tooth position, density of bone and size of arches, the orthodontist also has an accurate evaluation of the temporomandibular joint and position of the condyles. Impacted teeth are easily identified and position either buccal or lingual can be confirmed prior to movement or removal. Both MPDs and 3-D projections give the clinician a complete picture of the problems and the treatment course.

With a single CBCT scan, orthodontists can produce all of the information they need: panoramic, cephalometric, PA, SMVT, tooth size and volume, crowding evaluation in any plane, TMJ evaluation and airway analysis, all with both soft-tissue and skeletal information. Conclusion

McEowen has been a member of the World Clinical Laser Institute, achieving a mastership level of proficiency. He has been active in FDA approval of oral surgical techniques using Erbium lasers. McEowen has lectured and trained internationally in techniques using lasers in general and specialty dental fields. He is a member of the ICOI and is active in implantology. McEowen has been involved in cone-beam technology for more than five years and owns 3D Imaging Center in Maryland.

Fig. 6: Periapical showing minimal pathology with no radiolucency.

Fig. 7: Coronal MRI showing a short fill on the mesial lingual and radiolucent.

Fig. 8: Saggital MRI showing unfilled canal and radiolucent.

Fig. 9: Periapical showing a normal fill with a radioluency.

Fig. 10: Coronal MRI showing the superimposed lingual root unfilled.

Fig. 11: Coronal MRI showing nerve between roots of the third molar.

Fig. 12: The 3-D rendering showing superimposed roots and position.

Fig. 13: The 3-D Rendering with periodontal defects and cunilaus bridge.
Clinical digital photography. Part 1: Equipment and basic documentation

mCME articles in Dental Tribune have been approved by: HAAD as having educational content for 2 CME Credit Hours DHA awarded this program for 2 CPD Credit Points

By Dr. Eduardo Mahn, DDS, DMD, PhD Universidad de los Andes Clínica CIPRO Santiago-Chile

Abstract: The use of photography is becoming a standard in modern dental practice. The sharing of pictures is not only essential for communication between dentist, laboratory technician and patients, but also for communication between professionals, undergraduate and postgraduate students with their teachers and for documenting of clinical procedures in cases you want to show to both patients and work colleagues at scientific meetings. This article will describe the necessary equipment for clinical photography, explain its uses and deliver the foundation for basic documentation and structure for clinical cases. The second part will discuss the step by step documentation and show practical examples to improve your results.

Introduction
The first process of photography was presented to the world by Louis J. M. Daguerre at the Paris Academy of Sciences on January 7, 1839. In that same year, Alexander S. Wolcott, a manufacturer of dental instruments, designed and patented the first camera producing images on a silver-coated copper plate.3 Thanks to the graphic documentation that this allowed, it created the first dental journal, The American Journal of Dental Science.5

Due to the advancement in technology, we now have the privilege of having digital photography that allows an immediate view of the results and not having to wait for the processing of films as was the case of old movies, utilising silver halide ions in a gelatine emulsion on a strip of celluloid film to capture latent images. The advantage of digital images is that in addition to instantly seeing them through a viewfinder, there is less cost of developing film negatives and their storage is easy and fast. The power of viewing and saving images in computers also saves space and access to a database is almost immediate. By developing different virtual media files and almost universal use of email, information sharing is almost instantaneous anywhere in the world.

Because many of the procedures performed in dentistry represent established protocols that should be read, learned and then practiced, it becomes clear that photography aids us in teaching or explaining to our patients what we think are common, but to them are complex and mysterious procedures.

Digital Cameras
There are currently hundreds of cameras on the market. If we compare their features and capabilities, we can divide them into 3 groups:

Compact cameras (point and shoot), interchangeable lens cameras (mirrorless system cameras) and reflex cameras, SLRs DSLR (Digital Single Lens Reflex).

Initially, compact cameras (Figure 2) may seem appealing, but they have many limitations. They do not have a consistent image control, the position of the flash is not suitable for intraoral photography, distorted images from utilization of an insufficient macro lens in the wide-angle position, lack of manual exposure and focus problems. One of the biggest problems is the inability to change the lens, which given its design for a wide angle or middle distance, causes distortion of perspective, as the clinician would have to stand close to the patient. This has another negative effect of poor lighting.4, 5

The second group seems promising, but is still in development, and the third group, DSLR cameras (Figure 5), are those with greater advantages for clinical use, thanks to the sensor size and the many options in manual mode, lenses and flashes.

These cameras use a lens for both image composition and image capture. This design, which allows direct viewing and focusing without parallax error, is ideal for dental photography.4, 5 One of the biggest advantages is the ability to exchange lenses. For example, you can take pictures of landscapes, portraits, and all dental treatments with the same camera, by just changing the lens. The same applies with changing the flash. All professional cameras more than meet the requirements. Semiprofessional cameras (with a more affordable price) that meet these requirements are for example Nikon D7000, D90, D5100, D3200, Canon EOS 40D, 60D, 50D or other similar brands.

flash, macro lateral or twin flash light (Figure 4) or ring flash (Figure 5), is most suitable for intraoral photography, and has been a quite discussed topic for many years.6

The ring flash light is the favourite amongst inexperienced dental photographers and it is considered the universal flash system for general macro photography.6 On the one hand, it is true that the greater the distance between the ring flash and the subject, the flatter, less texturised and refined the photos are, while a twin flash generates pictures with more texture, contrast and that look more alive.12

The macro lateral flash shows more variability in light direction, allowing certain details to be highlighted. The overall hue of colour, cracks and also transitions are best captured. In addition, photographs taken on posterior regions, where access and space is limited, in these cases, the homogeneous light and easy handling of the ring flash has an advantage. In the author’s experience, when a clinician decides to begin clinical photography, a ring flash is more...
than adequate; the extra cost of the macro lateral flash is not justifiable, since differences in the early stages of the learning curve will not be substantial. Then once they handle certain techniques, the macro lateral flash is a great contribution.

Lenses

Basically, macro lenses from 50 to 200mm in focal length are used for clinical photography. In the author’s experience, macro lenses of about 100 mm in focal length provide the ideal combination of magnification ability and convenience working distance for dental purposes. Teleconverters or zoom lenses can be used, but not recommended. The same goes for lenses with autofocus mode. If this is the case, the automatic mode must be switched off and put on manual. Focusing is done manually and moving the ring lens near a sharp image, and with small movements to and fro, achieves perfect focus. A high quality lens is paramount to capturing crisp and bright photos. This aspect should not be compromised. It is ideal to have a magnification ratio of 1:1. In the author’s experience a good lens to start off with at a reasonable cost is the Sigma 105mm f/2.8 EX DG macro (Figure 6), which is compatible with different brands of cameras. On the other hand, for the seasoned and professional photographer, who does not want to compromise quality, a Nikkor micro lens and the AF-S 85mm f 2.8 ED, NC, VR (Fig. 7), would be recommended, though costing more than doubled compared with the aforementioned Sigma.

Black background or contrastors

This is a previous section, where the aim is to show the upper and lower teeth separately, the rest of the structures in the back-ground can distract from what you want to highlight. To avoid this, we recommend the use of opaque black plates called contrastors, positioned behind the teeth you want to photograph. When used correctly, the quality of the picture is improved and the viewer can focus on the subject (Figures 14 and 15). Besides commercial products from brands like Anaxadent, Doctors’ eyes and Photograph, different types of black plastic can also be used as long as they do not generate unwanted reflections. If you use material other than contrastors, it is important to use your preference consistently when photographing a series of photos. If you decide to cut the edges of the picture by using software such as Photoshop, it not only will not produce the same results, because cropping will increase the relative size of the pixels due to the magnification of the desired area, but will increase the time invested by the clinician producing good quality clinical photos.

Examples

In order to compliment intra-oral photography, it is recommended to show pictures of patients before and after treatment. These types of photos, although may seem simple and easy to execute, can present difficulties. In Figure 16 and 17, you can see a badly taken picture, distracted by multiple flaws such as inappropriate background, shadowing on the right side, and an unfavourable facial expression, etc. In contrast, Figure 16 shows a clearer picture, a neutral background, no unwanted shadows, good lighting and a positive expression from the patient. The second aspect to show in most of the presentations is a bacular overview of the oral cavity, starting from the anterior teeth. In the Figure 18 and 19, you can see two examples of a photo, the first badly taken and the second well taken. In this case, interest should focus on the anterior teeth that need treatment. Therefore, there is no point taking a picture showing lips, facial hair such as mustache’s, lip retractors and excessively showing gingiva. These structures only distract from what is really important. It is also easy to make errors in lateral views. An example of this is Figure 20, which shows that, in addition to an unexposed lateral and a light, the picture is dark, the angle is not right, you see the lips and the tip of the mirror. On the contrary Figure 21 is a better photo, having the proper exposure, no distracting elements and the correct angle was taken.

In the occlusal view, both mandibular and maxillary, one must keep several aspects in mind. A good mandibular occlusal photo is far more difficult than the maxilla with several factors: Firstly, the tongue needs to be retracted, secondly, the right and left side, the maxilla of the patient makes the clinician act quickly and without hesitation; thirdly, the angle of the photo.

In Figure 22 you notice, in addition to being inadequately illuminated, the axis of the arch is not centered with the photo. We can see the jaws and teeth as well as the edges of the mirror. In contrast, Figure 23 shows an image best achieved where the picture is centered, well lit, and with absence of other distracting structures.

Case report

One of the main objectives of the documentation process, is to explain to patients or students what steps were performed to reach certain results. It is also beneficial to graphically present and compare new and already established techniques. The following is simple case of two composite restorations with sectional matrices and a centrepiece layering technique using an esthetic overview of the detailed documentation and standardization that images should demonstrate.

Another objective of a systematic documentation is to have graphic material, either for patients to understand or for treatment results objectively, so they have no obscured treatment expectations. These types of aesthetically documented treatments will be discussed and presented with documented cases in a step by step manner in the next chapter of this series, in addition to discussing common mistakes and how to solve them.

About the author

Dr. Mahn is a graduate from the University of Oslo, School of Dentistry. He received the German IBD in Munster, Westfalen Lippe one year later. The New York University College of Dentistry certified him as Implantologist in 2007. In 2008, he published his doctorate thesis in 2008 titled “Osseointegration of zirconia implants, in an vivo study” and got his doctorate degree in 2009.
Using Cone Beam (CBCT) in Implantology

By Dr Alexander Luke

Abstract: Cone beam computed tomography (CBCT) is a diagnostic imaging technology that has changed the way in which dental practitioners view the oral and maxillofacial region, teeth and the surrounding structures. CBCT is designed in such a way that 3D images are seen without distortion and superimposition which is similar to CT imaging. The advantages of CBCT are: simpler image acquisition, lower capital cost and less radiation dose to the patient.

Introduction

Radiographic examination is an important diagnostic tool in dental implants treatment planning. Information obtained from a conventional or a digital radiography is limited by the fact that the 3D anatomy of the area being imaged is compressed to a 2D image. The superimposition of structures is again a major limitation of the 2D image.

Cone Beam Computed Tomography (CBCT / CBVT) is a 3D x-ray imaging technology that exposes the patient to an x-ray beam in the form of a cone which is revolved around the patient. The benefit that this has over a CT scan is that a CBCT scan requires significantly reduced exposure times and so exposes the patient to significantly less x-ray radiation. However compared to a 2D x-ray there is still an increase in dose and so consideration is still required when recommending a 3D view. The European association of osseointegration (EAO) have given guidelines which states that cross sectional imaging is beneficial in preoperative assessment and treatment planning of dental implants and that should not be a regular protocol post operatively unless needed.

A CBCT scan captures multiple images (ranging from 150 to more than 600) in a single scan with fewer artifacts when compared to panoramic radiography.

3D Images are ideal for planning the placement of implants. As with all x-ray procedures CBCT carries a radiation exposure risk to the patient and so it is necessary to ensure that the dose is kept to a minimum and will provided optimum diagnostic information resulting in improved patient care.

CBCT collimates the x-ray beam to focus on the area of interest known as the field of view (FOV). It is advisable not to radiate outside of the area of interest so it is very important that the CBCT system offers a choice of FOVs ranging from small to medium to large allowing the user to select the optimum FOV for the treatment. This function may not be available in all CBCT units however it is essential so that the user can select the correct FOV for the treatment and more important has available a small Field of View (for example 5.5 x 5cm) which is in fact suitable for
Indications for CBCT in implants
1. To assess the quantity and quality of the bone in the edentulous area.
2. The relationship of the implants to the neighbouring areas.
3. For the placement of implants in the desired area.
4. In designing a surgical guidance template.

Limitations of CBCT in implant planning
Crowns or metallic appliances in the mouth can cause artifacts of the 3D image. The metals causing artifacts can range from minimum to the extent that the image interpretation is difficult.

Conclusion
2D imaging has been serving the dental fraternity in their diagnosis and will continue to do in the future. The recent availability of 3D imaging using CBCT systems for treatment diagnosis and planning implant positioning gives the dentist more accurate information and improved patient care.

The Carestream CS 9000 3D has a FOV of 5 x 3.7 cm creating images with a resolution of 0.076 mm. This resolution is beneficial for accurately planning implants and overall improved treatment.

References
2. CONE BEAM CT FOR DENTAL AND MAXILLOFACIAL RADIOLoGy Evidence-Based Guidelines, EUROPEAN COMMISSION RADIATION PROTECTION N° 172, 2012, pg-73

Fig 1. 3D reconstructed view.
Fig 2. Axial cross sections.
Fig 3. Panoramic view.
Fig 4. Sagittal view.
Fig 5. With length and measurements.
Fig 6. Without length and measurements.
Interview: Vanik Kaufmann explains the advantages of KaVo’s new ARCTICA CAD/CAM system

Not only has the proprietor of the dental laboratory Ceratech in Liestal near Basel been a CAD/CAM user from the very beginning but he also has provided valuable input into the technology’s development through his active participation in it. Recently he has become the owner of KaVo’s new ARCTICA system. We wanted get his first impressions from working with the system.

KaVo: Mr. Kaufmann, you recently started using KaVo’s ARCTICA CAD/CAM system. You have extensive experience with CAD/CAM systems. What do you consider to be ARCTICA’s particular advantages?

Mr. Vanik Kaufmann: First of all there is the stripped light scanner. I particularly like that it is a semi-automatic design. With fully automated systems I often encounter problems with cumbersome re-scans when the first scan was incomplete. Scans that require essentially no corrective work can be achieved with very little experience. In addition, it works extremely fast. And even in cases where the scan shows gaps the model can be repositioned accordingly, perhaps by tilting, and the software applies any subsequent corrections automatically.

And what are your experiences with the grinding unit? I really appreciate that it is a compact 5-axis system that not only uses blanks very economically but also that I am finally able to process metal, something that up until now was not possible with small systems.

Is zirconium dioxide still important nowadays? There are still dentists who request metal frameworks. When CrCo alloys are required, we have them externally made by selective laser sintering. When biocompatibility is required, it has to be titanium. We process a large number of titanium connecting bars and up until now had to have them fabricated externally.

Now we are able to do this in-house and the design is simple and fast by means of the software provided.

How practical is the software? It is fantastically simple. E.g. during the design of an anterior bridge, the automatically proposed crown can be moved and rotated through key combinations which are considerably faster and simpler than with other solutions that require multiple key clicks. And its operation is intuitive to learn. Within half an hour of receiving it I was able to do a bar design without a hitch and without receiving any training. KaVo’s hotline with remote support is equally fantastic and useful especially in the early stages when one might have the occasional problem: These consultants are highly competent, they can log in remotely and point out mistakes on your own screen or give hints on how to do things even faster.

The multiCAD Software is equipped with open interfaces, but not every scanner supplier offers open interfaces. How much data transfer can you utilise? We are not only able to do this with manufacturers that provide STL files but also with others who still believe in the advantages of proprietary systems. We are using Rhino’s dental shaper for this purpose; it can convert all relevant data sets to compatible STL files. You also use a printer (Solid- scope).

Are you using ARCTICA data in your entire workflow? Yes. We have decided to no longer draw what one thinks. The design of these abutments have been experiencing loosened over time. For lateral abutments which we weld to the bonding base. The design of these abutments too is amazingly simple: One draws what one thinks.

Mr. Kaufmann, many thanks for this interview.

By KAVO

When it comes to state of the art CAD/CAM technology in dental laboratories, then patients are in best hands at ZTLM Vanik Kaufmann-Jinoian. His numerous lectures on the subject are an impressive proof of this.
NEW: Philips Sonicare FlexCare Platinum

For outstanding cleaning, even deep between the teeth

Philips has the right sonic toothbrush for every cleaning need. The latest innovation is called Philips Sonicare FlexCare Platinum. Its innovative pressure sensor gives immediate feedback in a simple manner if too much pressure on the brush head minimizes the vibrations. This makes the Philips Sonicare FlexCare Platinum ideal for those of your patients who are worried about using too much pressure when cleaning with an electronic toothbrush. Nine individual settings and intensity levels thereby make adaptation to the individual cleaning requirements possible.

Pressure sensor
This innovative sensor gives simple and intuitive feedback if the brush head is pressed down too hard.

3 cleaning settings
• Clean – ensures optimal plaque removal (standard)
• White – removes discoloration of the tooth surface in 2 minutes, and the front teeth are whitened and polished in a further 30 seconds.
• GumCare – combines 2 minutes in the Clean setting with 1 minute of gentle gum massage for healthy gums.

3 intensity levels
Maximum comfort with the 3 adjustable intensity levels: low (for sensitive areas), medium and high. Each of the 3 intensity levels can be combined with each of the 3 cleaning settings.

Philips Sonicare InterCare brush head
Extra long filaments reach deep into the spaces between teeth and ensure an excellent plaque removal there compared to a manual toothbrush. For better tooth and gum health.

UV-Sanitizer
With the UV light technology from Philips, up to 99% of the bacteria and viruses\(^1\) on the brush head are rendered harmless – in only 10 minutes.

Lithium-ion rechargeable battery
With 3-week working life

\(^1\) E. coli, S. mutans and HSV1, HA
The Inman Aligner: A progressive approach to smile design - Part 2

By Dr Tiff Qureshi

The following article is Part 2 in a series discussing the use of the Inman Aligner as a tool for minimally invasive cosmetic dentistry. The first article (published in DTMEA November-December 2013) demonstrated that standalone treatments of patients are an alternative to both fixed braces, which are unsightly and have long treatment times, and to expensive clear aligner treatments in suitable cases. This article will demonstrate that patients who desire a more traditional smile makeover can achieve beautiful results in a more progressive manner that allows them to make their choices along the way. This often results in virtually no removal of tooth structure and a treatment result with the responsibility of decision-making shared between dentist and patient.

Moreover, the subject matter of this article could potentially start one of the most controversial debates in cosmetic dentistry for years. We are not only discussing a radically different approach to smile makeovers, but critically a sharply different approach to the traditional methods of planning smile design.

What would you choose? Patients entering cosmetic practices are often assessed at the initial consultation. They have digital photographs taken and perhaps study models are made. Normally, dental imaging software is used to show patients what can be achieved. These ingenious programmes (see www.snapdental.com/AUS) can help patients visualise what is possible. Naturally, care must always be taken when promising treatment results that are viewed digitally.

While computer imaging can be a very powerful tool to help the patient see the potential in his/her eyes, I believe it also can make a patient focus on a certain prescribed goal that may not be the only way of satisfying his/her wishes. Dentists using imaging would ideally create a set of five to ten different outcomes of varying degrees of improvement to allow the patient to make a more informed decision. While ideal, it is not certain that dentists actually present different levels of treatment to their patients digitally. Even if they were able to see various images of their teeth, it can still be difficult for a patient to really see and feel the suggested changes in their mouth. One can question the ethics of allowing patients to commit to a potentially irreversible procedure based on 2-D photographs.

Three-dimensional waxes-ups can also be very useful at this stage. If a patient is keen on the image, going to an additive wax-up can sometimes allow for a direct preview try-in using a silicon stent taken from set-up. Temporary material of variable shades can be tried in directly, without any bonding to allow the patient to see the proposed outline, form and overall aesthetics.

Despite this, veneers are often used to treat alignment issues and it is very difficult for patients to appreciate the alignment of their own teeth with wax-up or imaging. By approaching these cases with a different protocol in mind, a dramatically less invasive treatment plan becomes evident.

“We are not only discussing a radically different approach to smile makeovers.”

The first step is to look at the patient’s tooth alignment. Mis-aligned teeth often cause issues in gum heights, line angles, light reflections, shades and tooth length. Correcting the misalignment first can create a completely different perception of the apparent problems. Next, the teeth should be bleached. This can be done either immediately after the teeth have been aligned or alternatively simultaneously. After alignment and bleaching, edge bonding (we term this the ABB concept) should be offered to improve the incisal edge outline.

This combination of treatments also works well because the Inman Aligner is a removable appliance and only needs to be worn 16 to 18 hours a day. This means simultaneous bleaching is very possible and straightforward. A recent study from Sweden indicates a cost-benefit advantage of treating patients with removable appliances in general dental clinics, rather than with fixed appliances at specialist orthodontists. The conclusion of this study is significant, since a popular choice amongst aesthetic dentists in the UK is removable orthodontics.

The cases outlined here highlight patients who, either at the start of treatment or for years, had originally wanted veneers and had a specific result in mind that only veneers could have offered quickly. They were all concerned about the degree of preparation required so undertook alignment first. Then, part of the way through, started bleaching and very quickly changed their minds about what they wanted once they saw their own teeth improve.

Case 1 (Figures 1-8) Laura was concerned about her very prominent central incisors. She wanted to have them straightened and had considered veneers. She had ruled out conventional orthodontics and invisible braces because she wanted a quick treatment and did not want anything stuck to her teeth, which is the reason that she had refrained from orthodontic treatment. Several years ago, she may well have had veneers placed.

On viewing her teeth before the occlusal photograph, it was quite clear that this would have involved massive preparation of the upper teeth.
central teeth. Preparation would have been well into dentine and may have even involved elective endodontics. Her lateral teeth would have needed little preparation, but the emergence profiles would have been poor, creating unrealistic aesthetic and a possible periodontal risk later on. Instead, the alignment was completed with an Inman Aligner in ten weeks. Her treatment sequence is detailed below.

BACD-style digital photographs were taken and the amount of crowding was calculated using an electronic crowning calculator, which can also be done by arch evaluation of the patient’s study models. We measured the ideal curve and subtracted this measurement from the total mesio-distal widths of the teeth being moved. The results showed that there was only 1.6 mm crowding. This seemed less than one would have expected; the reason for this was that because the laterals were being pushed out, the arch was being expanded, thus creating space.

It was clear from the photographs that despite the obvious crowding, there was some less obvious irregular outline caused by tooth wear. It was important to indicate this to the patient, as this would become more evident once the misalignment had been corrected. The patient was quoted for three incisal composite veneers. She once considered having veneers years before. However, on reviewing her case, it was clear that we could improve her alignment dramatically with an Inman Aligner in a short period.

Looking at her post-alignment result, the golden proportion, gingival heights and axial-inclinations had improved dramatically, all without a handpiece being picked up and in the space of nine weeks. What was very clear to the patient at this point was that she only needed some simple bonding to improve the incisal edge outlines. Without the use of an anaesthetic, the edge outlines were prepared with very slight roughening of the edge, bonding of hybrid composite on the load bearing edge and a microfill on the facial surface. The edges were then polished.

The patient was thrilled with the result we achieved using an Inman Aligner and some simple bonding. She described that when she had once consulted having veneers, she had hoped for a similar result. There are still minor imperfections, but, in my opinion, these contribute to her natural beauty.

There is a stark contrast between the treatment selected and the potential treatment approaches in this case. Where once a patient, who refused orthodontics, would have consented and received highly aggressive tooth preparations to achieve correct alignment with veneers, now a removable aligner and some simple bonding were able to achieve a similar and arguably better result in less than three months with not a micrometer of tooth reduction needed.

Case 2 (Figures 9-17)

This young lady had been attending my practice for some time and was aware of porcelain veneers, having seen our previously advertised cases. We had spoken about the aesthetic benefits of veneers before. However, on reviewing her case, it was clear that we could improve her alignment dramatically with an Inman Aligner in a short period. We took an occlusal image of her anterior teeth and outlined the amount of tooth structure that would have to be removed to produce veneers that would look aesthetic. It was immediately apparent to the patient that alignment of her teeth would offer a possibly better treatment outcome. Her case was suitable for an Inman Aligner and as only 2.5 mm crowding was present, this meant it could be treated quickly and simply. Her Inman Aligner was fitted and IPR performed progressively over three visits. At week eight, upper and lower bleaching trays were constructed even though her alignment was not yet complete. Home whitening was begun with clear and concise instructions. We used rubber trays with a deep seal cut into the model to create a tight dam effect. Over two weeks, her teeth whitened nicely and at week ten, she returned for a review.

Interestingly, the patient’s perception of her smile had changed dramatically. Owing to the improved line angles, whiter teeth and aligned gum heights, her eyes were now only drawn to the irregular outline caused by chipping and differential wear.

The patient then enquired about fixing the edges. We offered to bond the incisal edge with virtually no preparation. A hybrid composite (Tetric Flow, Ivoclar Vivadent) was placed palatally and incisally with a microfill on the facial surface. This was done in B0 and B1 shades to match the bleaching. The patient was delighted with the result and a wire retainer was bonded immediately.

Despite some clear deviations from her ideal simulated smile, the patient explained that she felt her smile after alignment was better than she had imagined. Her veneers would have been. Had veneers been placed, we could perhaps have corrected the golden proportion more fully, balanced the zoneline, improved the canine outlines, widened the buccal corridors, etc. However, that was clearly not what the patient desired. Should she later decide that she does need further improvements, she can proceed with already straightened teeth. The ABF smile design is progressive and not sudden or rushed. In this manner, the patient is given the opportunity for decision-making in his/her treatment and the responsibility in choice is shared.
Case 3 (Figures 18-20)

This patient presented with what she described as a "wooky smile". She had previously looked into the possibility of having porcelain veneers placed so understood some of the aims of smile design. However, on studying her teeth, it became clear that there was potential to pre-align first. Her upper right central was mesially rotated by approximately 30° and her laterals were slightly in-standing and mesially inclined. Furthermore, she had fairly stained teeth, with the canines two shades darker than the centrals.

On examining the occlusal view, the patient became aware of the extent of aggressive tooth preparation that would be required to place a veneer. She understood that her teeth needed to be aligned before final decisions were made on the next step in treatment.

An Inman Aligner was used over the period of eleven weeks (to de-rotate the front tooth and to tip out the laterals. At week eight, bleaching was begun using 5% to 45-minute a day H2O2 gels. Simultaneous whitening is a very attractive part of the aligner treatment, as it helps with patient motivation. After alignment, the case was re-examined. Once her teeth had been straightened, it became evident to the patient that her problem concerned edge shape, which had actually worsened with alignment owing to differential wear. In fact, the left central was 2.5 mm shorter than the right. It was very clear to the patient that only these incisal edges needed building in order to achieve the smile she desired.

For placement of the incisal edges at week twelve, no local anaesthetic was administered. Other than slight roughening of the worn incisal edges of the upper left 1 and 2, no other preparations were needed. A tetracycline (Tetric Flow, Ivoclar Vivadent) was built up free-hand on the incisal edge and palatal surface to match the outline of the other central. A small amount of white opaque resin was dotted to mix to the facial surface and was simply filled with a nano-hybrid composite (Verus Diamond, Heraeus) for high polish. The composite was placed vertically using rubber sticks (Posto, DENTSPLY DeTrey) to try to blend in with surface anatomy to mask the join. The process was repeated on the lateral.

The patient was held in retention using her aligner and an impression was taken for a wire retainer to be fit two weeks later. It was especially nice to retain the natural aesthetic characteristics of this patient. Ceramic work, as beautiful as it can be, would certainly have changed her appearance more – some may say for the better, but that was not what the patient actually wanted. She wanted her own teeth to have correct length and look straighter and whiter.

Shared responsibility of treatment

The ABB concept can truly be described as minimally invasive. At the same time, it actively involves the patient in the treatment, giving him/her a feeling of being in control and taking responsibility for his/her treatment. This has been proven to be of great significance when measuring patient satisfaction of treatment results.

There are many anecdotal stories about patients who had technically beautiful veneers placed but found that they simply did not meet their desires. The problem is that even with no-preparation veneers, an irreversible procedure has been undertaken and this has been done mainly based upon the treating dentist’s opinion, with the patient having very little input.

In my experience, every patient that I have treated according to the ABB concept has accepted the result happily, even though technically it might not be perfect from a smile design point of view.

Nowadays, with rising levels of litigation, one would have to question the wisdom of selecting a treatment path that could result in conflict over one in which the patient participates in key decisions and sees his/her own teeth improve.

I believe this approach firmly sits alongside minimally invasive cosmetic dentistry core principles, which recommend a more minimally invasive and patient-led approach.

Conclusion

I understand the controversy in challenging the traditional approach to smile design, but believe that the mastery of progressive smile design is vital when we are looking to give our patients what they actually want. Previously, whitening was always a way of aligning patients and an alternative view of their teeth. Now, and more significantly with alignment techniques, patients can make their own decisions and massively reduce the risks by breaking down the process of a smile makeover into stages and assessing at each point.

With ABB, it is possible to align, whiten and bond a case in less than twelve weeks, which previously might have required eight to ten veneers, four times the cost and significant tooth preparation. Thus, a dramatic contrast in pathways has been created. If a patient is happy after alignment, whitening and minimal bonding, then this has to be viewed as a success. This UK technique is now a significant new treatment discipline in its self and cosmetic dentistry will be better for it. After all, what would you choose to have?

Editorial note: References are available from the author.

Contact Information

Dr. Tif Qureshi is the Past President of the BACD.

He presents hands on courses and lectures on the Inman Aligner worldwide.

For information on courses please go to: www.inmanalignertraining.com or contact Caroline Cross on:

tel: +44(0) 366 5477

www.dentaltribune-mea.com

By Philips

Philips Sonicare FlexCare Platinum

Philips Sonicare FlexCare Platinum is the latest introduction from the number one sonic toothbrush brand recommended by dental professionals worldwide. The new Philips Sonicare FlexCare Platinum is uniquely designed to give patients an even deeper clean between the teeth, removing up to six times more plaque between teeth than a manual toothbrush.

Sonic technology

The innovative Philips Sonicare FlexCare Platinum power toothbrush uses Philips Sonicare's patented sonic technology to deliver an exceptional, deep clean between the teeth. Using a unique combination of high frequency and high amplitude, the Sonicflex Care Platinum produces over 30,000 brushstrokes a minute to create a dynamic yet gentle cleaning action. Its brush head moves with a side-to-side sweeping motion and a high filament tip velocity to gently drive fluid deep between the teeth and along the gum line.

InterCare

the innovative interdental brush head

The Philips Sonicare FlexCare Platinum features a new brush head with innovative anchor-free tufting technology and extra-long filaments designed to reach deep between teeth and remove more interdental plaque biofilm than a manual toothbrush.

The Philips FlexCare Platinum's brush head filaments are molded directly in the plastic housing allowing for a unique filament pattern and lengths designed to deliver an optimal and complete clean. As opposed to other brush heads that wrap filaments in metal loops implanted in the brush head before being cut to size from above, anchor-free tufting technology pulls filaments through the brush head until they are the right length and are then cut from below. This ensures that the filament tips remain uniform in shape and can be rounded for a gentle yet effective clean.

Anchor-free tufting technology also allows for the brush head to be fitted with more filaments than traditional brush heads, which can be arranged in various patterns to perform specific tasks:

• Remover filaments – to remind the user to change the brush head after approximate three months
• Along-the-gum-line filaments – remove plaque along the gum line
• Elongated filaments – reach deep in between teeth
• White filaments – polish and clean the surface of the teeth

The InterCare brush head is available in standard and compact sizes.

The InterCare brush head is available in standard and compact sizes.

Brushing modes – an individual brushing experience

Philips Sonicare FlexCare Platinum has three individual brushing modes and three intensity settings to give patients greater control over their brushing experience and to deliver a cleaning action suited to their specific needs. The toothbrush has three cleaning settings:

• Clean – standard cleaning for the whole mouth
• White – removes stains and helps whiten teeth
• Gunn Care – gently stimulates and massages the gums

Additionally, three adjustable settings are available:

• Normal – the standard intensity for normal brushing
• Sensitive – a gentle intensity for sensitive teeth
• Extra soft – an extra-gentle intensity for an even softer brushing experience

Automatic pressure sensor

The new Philips Sonicare FlexCare Platinum also features an automatic pressure sensor which provides real-time feedback to ensure an optimal clean every time.

UV sanitizer

The Philips Sonicare FlexCare Platinum is also available with a UV sanitizer to help reduce the bacteria build up on toothbrush heads.
Case presentation: OptiBond™ XTR

By Claude Finelle

This 85-year-old patient, who was in good health, came for a consultation to “improve his smile”.

This was motivated by jokes made by his grandchildren about the condition of his teeth. Primarily, the 6 anterior maxillary teeth were involved. There was no particular request to lighten the smile.

During the first consultation, the clinical examination revealed the presence of numerous cervical lesions, as well as fractures of the incisive edges of 11 and 21.

The above-mentioned fractures of the free edges of the central incisors, the presence of a carious lesion on the mesial surface of 11, an old composite on the mesial surface of 21 and the patient’s complaint about the elongation of the two centrals led us to opt for two all-ceramic e.max crowns made of feldspathic ceramic reinforced with lithium disilicate. Taking into account the patient’s age, this therapeutic choice was not hindered by the proximity of a high volume of pulp.

We selected e.max in the hope of achieving better aesthetic integration, with its translucence allowing the saturated and natural appearance of the underlying preparations to show through.

This type of all-ceramic restoration allows us to take advantage of bonding, which appeared to us to be the best solution on the vital teeth. (We used the bonding agent to seal the dentinal tubules and improve the sealing of the cervical limits.)

We remedied the cervical wear on all of the teeth, including the central incisors (from 14 to 25). For this treatment, we used OptiBond™ XTR, a two-step, self-etching adhesive system (SAM2), and Miris composite in shade S6.

The central incisors were then prepared by cutting back the marginal limits inside the vestibular composite itself, in the manner described above.

We used the green-ringed tip (Komet) followed by the red tip bar for polishing, under heavy irrigation. The preparations were carried out with optical assistance (magnification X 2.5) and the limits were more gingival.

An impression of the 2 preparations was made during the same appointment. One week later, the two crowns, made by LNT laboratory in Paris, were delivered to the practice. They were tried in and then etched with 10% hydrofluoric acid for 20 seconds. Once the acid had been neutralised the surface carefully dried, a layer of Optibond XTR universal adhesive (bottle no. 2) was applied to the restorations’ internal surface shortly before application of the adhesive.

The advantage of Optibond XTR is its ability to adhere to all types of prosthetic substrates without preparation or initial priming. This allowed us to perform our bonding procedures more efficiently, dealing with both restorations at the same time regardless of the prosthetic material. The adhesive treatment of the preparations was carried out with the same Optibond XTR and, in this case, we applied a first layer of the primer, Optibond XTR Primer (bottle no. 1), which was brushed onto the enamel and the dentine for 20 seconds and then dried for 5 seconds. We were careful to dip the brush in several times during the application process, to ensure fresh acid was being brought into contact with the dentinal surfaces each time and to optimise etching.

Before applying Optibond XTR Adhesive (bottle no. 2), we were careful to shake the bottle lightly to ensure homogeneity.

1. Initial clinical presentation. The patient’s concerns were aesthetic and focused on the upper dentition.
2. Creation of two ceramic crowns in e.max.
3. The crowns were etched with 10% hydrofluoric acid for 20 seconds. Note the white, chalky appearance on the margins.

OptiBond XTR and NX3
The perfect combination

XTR and NX3 are so good, you can use both in total dark cure without any additional self-cure activator. The combination of OptiBond XTR + NX3 Autocure cement demonstrated better indirect dentin bond strength to the MunliNcementation System.

Study performed by State University New York, Buffalo.

OptiBond XTR and NX3 Some things are just meant to be. The powerful chemistry of OptiBond XTR provides high and predictable self-etch bond strengths, while NX3 resin cement brings unmatched aesthetics, and excellent colour stability. Put the two together, and you’ve got the perfect match for all your indirect restorations without self-cure activator and additional primers. Try OptiBond XTR and NX3 in your practice. Great on their own – even better together.
Two phase treatment of a Class II division 1 patient complicated by traumatic upper incisor intrusion: A Case Report

By Dr. Roelien Stapelberg

Phase I
A female patient presented at the age of 7 years and 8 months with the complaint that one of her upper teeth were absent. She had a mild thumb sucking habit with a tongue thrust. She had a Class II division I incisor relationship on a Class II skeletal base with mildly decreased vertical facial proportions.

Extra-oral examination (Figure 1a-c)
Extra-orally the patient presented with a Class II skeletal pattern convex profile and accentuated labiomental fold. She had acceptable vertical facial proportions. The frontal examination revealed acceptable facial symmetry and balance, with the upper central incisor coincident with the midfacial axis. Soft tissue examination demonstrated thin upper and lower lips with mild incoordination, as well as an acute nasolabial angle. The lower lip was retrusive to the E-line.

Intra-oral examination (Figure 1d-h)
The patient was in the early mixed dentition and had good oral hygiene. There was no history of dental caries, and no active dental caries. Mild generalized extrinsic staining was present. Furthermore there were no restorations present. The maxillary arch was symmetric and tapered, whereas the mandibular arch was square and symmetric. Both arches had no space deficiency and had well aligned buccal segments. The upper right central incisor was missing, and the upper left central incisor was proclined. In occlusion, the overjet measured 10 mm, with no overbite present. The molar relationship on the left was full Class II, and the right side was ¼ Class II. The lower centraler was 2 mm to the left of the upper centerline, which was coincident with the facial centerline. There was no crossbites or displacements.

The Dental Health Component (DHC) of the Index of Orthodontic Treatment Need (IOTN) was 5, and the Aesthetic Component (AC) was 9.

Radiographic examination (Figure 2a,b)
The DPT demonstrated that all second molars were present and developing, as well as the lower third molars. The upper right central incisor seemed to be horizontally impacted. The cephalometric analysis confirmed our clinical findings of a Class II skeletal pattern with an ANB of 7.0°. The Wits appraisal affirmed the Class II skeletal pattern with a measurement of 7.5 mm. The vertical proportions were slightly decreased, demonstrated by the maxillary-mandibular plane angle of 82.2° and face height ratio of 52.1%. The upper incisors were severely proclined at 128.5°, as was the lower incisors at 106.0°. The lower incisors were retruded relative to the A line with a measurement of -0.8 mm.

Problem list
1. URI Horizontally impacted
2. Class II skeletal pattern due to mandibular retrognathia
3. Convex profile
4. Increased overjet
5. Lower centerline 2 mm to the left of the upper centerline
6. Facilitate eruption of URI
7. Establish Class II skeletal pattern by encouraging mandibular growth
8. Improve facial profile
9. Decrease overjet to within normal range
10. Maintain result until comprehensive orthodontic therapy

Treatment plan
1. Upper hybrid TPA - tongue crib appliance to assist in breaking the thumb sucking habit and relieve the present tongue thrust, while reinforcing the anchorage of the URI.
2. Upper 2x4 pre-adjusted edgewise fixed appliances (0.022" x 0.028" slot) with MBT prescription. Upper utility arch 0.016 SS with an open coil spring to create and maintain adequate space for the URI.
3. Surgical exposure of the URI via the open technique with removal of the gold chain and orthodontic traction to the archwire to facilitate eruption.
4. Bonded upper fixed retainer to URI.
5. Comprehensive orthodontic therapy.

Treatment progression (Figures 5a,b)
After the manufacture of the upper hybrid TPA tongue crib appliance, it was inserted and the bonding of the upper with 2x4 fixed appliances with MBT prescription was placed. An 0.016 SS utility arch archwire was placed with elastomeric ties, and the patient was referred for surgical exposure and placement of a gold chain and retention base for traction of the URI. After the surgical exposure, the URI 1.6 mm was ligated together, and an elastic chain tied to the gold chain attached to the URI using a long ligature to encourage eruption of the URI. An NTI open coilspring was utilized to obtain adequate space for the URI. The eruption encouragement was continued until the URI could be bonded and ligated with an elastic chain continuing the eruption process, to the same URI.

When the position of the URI was at an adequate level, it was engaged on the 0.016 SS with an elastomeric tie. The time period from surgical exposure of the URI to alignment with the archwire was 5 months. The URI was then placed and an upper fixed retainer from URI – URI was placed.

Treatment assessment (Figure 4a-g)
Case one was a 7 years and 8 months old Caucasian female presenting with a Class II division I incisor relationship on a Class II skeletal base with mildly decreased vertical facial proportions. The mandible was retrognathic, and the maxilla normal. The malocclusion was complicated by a horizontally impacted URI. The patient presented with no space deficiency. The upper centerline with the upper facial midline, and the lower centerline was 2 mm to the left of the upper. The molar relationship was full unit Class II on the left and ¼ unit Class II on the right.

Phase II treatment was deemed appropriate, and consisted of a hybrid TPA-tongue crib appliance with 2x4 upper pre-adjusted edgewise fixed appliances (0.022" x 0.028" slot) with MBT prescription. Surgi-
A female patient presented at 9 years 4 months of age for a retention check of her fixed upper retainer, still in place from her previous orthodontic treatment (Phase I). She had a Class II division 1 malocclusion, on Class II skeletal bases, with decreased vertical proportions, bimaxillary proclination and a lower lip trap.

Extra-oral examination

Extra-orally the patient had a severe Class II skeletal pattern with a convex profile and acceptable vertical proportions of the face. Frontal examination revealed no transverse asymmetry, and the upper centerline was on with the midfacial axis, with lower centerline being shifted 2 mm to the left. Soft tissue examination demonstrated a retruded and incompetent lower lip of normal thickness. A lower lip trap was also present.

Intra-oral examination

The patient was in the late mixed dentition and had good oral hygiene. There were no restorations, and the patient was caries free. The maxillary arch was ovoid and symmetrical with no space discrepancy. The buccal segments were well aligned, with mesial buccal rotation on the UR6 and UL6 present. The mandibular arch with ovoid and symmetrical with no space discrepancy, with a deep curve of Spee present. The buccal segments of the lower arch was well aligned. In occlusion the overjet measured 8.5 mm, with an overbite of 3.5 mm (50%). The left molar relationship was ¼ unit Class II, and the right ¼ unit Class II. The left canine relationship was full unit Class II, and the right was ¼ unit Class II. No crossbites were present. The dental health component (DHC) of the Index of Orthodontic Treatment Need (IOTN) was 4a, and the aesthetic component (AC) was 0.

Radiographic examination

The DPT demonstrated that all third and second molars were developing. No other abnormalities were found. The cephalometric analysis (Table 1) confirmed a skeletal Class II anteroposterior discrepancy as demonstrated by an ANB of 3.8° and a Wits appraisal of 6.5 mm. Both the upper and the lower incisors were severely proclined (134.7° upper & 104.5° lower), with the lower incisor in a relative normal position in relation to A-P line (0.6 mm).

Problem list

1. Class II skeletal relationship due to mandibular retrognathia
2. Convex profile with reduced lower lip protrusion
3. Upper incisor proclination
4. Overjet of 8.5 mm
5. Asymmetric Class II molar and canine relationship
6. 2 mm lower centerline discrepancy to the left of the upper dental midline
7. Incompetent lips at rest

Aims and Objectives

1. Utilize favorable mandibular growth for improvement of the Class II skeletal discrepancy
2. Improve facial harmony and increase lower lip protrusion
3. Reduce upper incisor proclination
4. Reduce overjet to normal values
5. Establish optimal buccal segment interdigitation bilaterally
6. Establish coincident centerlines
7. Obtain lip competence at rest
8. Maintain incisor display on smiling
9. Place teeth in a position consistent with lower centerline being shifted 2 mm to the left
10. Retain corrected result

Treatment plan

1. Upper removable appliance while waiting for eruption of the upper second premolars and the growth spur to occur. Appliance manufactured with an expansion screw to establish adequate maxillary dentofacial width to accomplish mandibular forward posturing without occlusal interferences from a crossbite tendency, with a 2-spring on the 12 to obtain initial alignment.
2. Andreason’s Activator appliance for mandibular growth stimulation with wax bite of approximately 5 mm was given after the growth spur was reached as evaluated by clinical examination. Capping of lower incisors was done on the Activator to minimize lower incisor proclination.
3. Full upper and lower pre-adjusted edgewise fixed appliances (0.022” x 0.028” slot) with MBT prescription was placed after Class I canine was achieved with the Activator.
4. Bonded upper fixed retainer individually from UR3 to UL5 and upper vacuum formed retainer to be worn at night time only and a bonded lower fixed retainer individually from LR3 to LL5.

Treatment progression (Figure 5–8)

Compliance was excellent with the upper removable appliance and expansion attained was sufficient to prevent crossbite occurrence when the mandible was postured forward into a Class I canine relationship. After the growth spur was attained, an Activator appliance was manufactured with forward posturing into...
Class I canine relationship bilaterally and a waxbite thickness of 5mm (Figure 5). The compliance with the Activator was excellent, and after 5 months of wear the patient was ready for fixed appliances. A cephalogram after the Activator treatment was taken and analyzed (Figure 6). The cephalometric analysis (Table 2) revealed a skeletal Class I antero-posterior relationship (ANB 3.6°, Wits appraisal 2.8 mm). The SNA reduced during the use of the Activator, which was the cause for the reduction in the ANB angle. The SNB remained almost the same. The vertical proportions indicated a mildly anterior growth rotation. The upper incisors retroclined, and the lower incisors proclined after the Activator use. The upper incisors were severely proclined with 120.0°, and the lower incisors as well with 111.3°. The lower incisors protruded in relation to APO (5.2mm). 0.022 slot preadjusted edgewise fixed appliances were placed, with the leveling and aligning phase initiated with 0.016" heat activated Nickel Titanium archwires in the upper and lower arches. The archwires progressed to 0.019 x 0.025" heat activated Nickel Titanium in the upper and lower arch, followed by customized and coordinated 0.019 x 0.025" stainless steel archwires with steel ligatures. At this stage the patient was advised to use Class II intermaxillary elastics (5/16" 3oz) bilaterally full time to correct our canine relationship after mild relapse occurred during the alignment and leveling phase of the fixed appliances. The intermaxillary elastics were continued for 4 months. During the torque expression of the rectangular steel wires, mild spaces opened in the upper arch, these spaces were closed with friction mechanics utilizing a closed elastomeric
PRECISION CLEAN BRUSH HEAD PROVIDES

UP TO 5x

GREATER REDUCTION
IN PLAQUE BIOFILM ALONG THE GUMLINE

5x

Oral-B®

#1 Oral-B, most Dentist Recommended Toothbrush Brand worldwide

* vs. a regular manual toothbrush

continuing the care that starts in your chair
1 COMPLETE SENSITIVITY TOOTHPASTE
SPECIALY DESIGNED WITH 7 BENEFITS*

All-round care for dentine hypersensitivity patients*1-6

We are constantly evolving our specialist range to meet the differing needs of dentine hypersensitivity patients. That’s why we developed Sensodyne® Complete Protection.

SENSITIVITY ENAMEL CLEAN GUMS FRESH PLAQUE WHITENING

*With twice daily brushing

Everyday, day after day, your patient’s denture will have to support thousands of tasks. So it’s little wonder that even people with well-fitting dentures will have problems with trapped food, fears their denture will dislodge or a concern about bad breath.

This is where a Daily Denture Care Regime from Corega fits in

Corega adhesive
- Proven to improve bite force by 38% in well fitting dentures,1 which improves your patient’s ability to eat difficult foods
- Provides all day hold and helps seal out 74% more food particles compared to no adhesive,2 helping to reduce the irritation and pain they cause

Corega cleanser
- Proven to manage denture hygiene effectively*2
- Reduces plaque build-up with proven1 bactericidal3 and antifungal activity4

Proven bactericidal activity against gram-negative bacteria
- K. Pneumoniae
- A. Actinomyces
- F. Nucleatum

Kills 99.9% of bacteria

1 denture care regime
By recommending a Daily Denture Care Regime to your patients with dentures, you can be assured that you are helping to improve their comfort and confidence every day, day after day

This is where Corega fits in

*When used as directed. †In vitro

chain from upper right to left first molars. A cephalogram was taken after correction of the anterior posterior relationship to check the incisor inclinations and evaluate the patient for the possibility of extraction. The upper incisors were proclined, as was the lower incisors, however the lower incisors did not procline more than the pre-treatment value, and the facial appearance accepted the increased proclination. Therefore no extractions were done to decrease the incisor proclination.

Finishing and detailing was done with a 0.018 stainless steel wire. The estimated treatment time for Case 1 treatment was 24-50 months. The actual treatment time was 22 months. Retention was initiated with an upper vacuum formed retainer and a lower fixed 3-3 retainer.

Case 1 assessment (Figure 9)

Case 1 presented to the orthodontic clinic at the age of 7 years 8 months, with a Class II division 1 incisor relationship on a Class II skeletal base with mildly decreased vertical facial proportions. The mandible was retrognathic, and the maxilla proportioned. The mandible was on a Class II skeletal base with mildly decreased vertical facial proportions. The mandible was retrognathic, and the maxilla was large. The molar relationship was severe proclined, with the upper incisors clining and the maxilla normal. The malocclusion was complicated by a horizontally impacted UR1. The upper central incisors were severely proclined, with the lower incisors in normal position relative to the APo line.

Orthodontic camouflage for the underlying Class II skeletal discrepancy was carried out. On initial examination it was clear that the upper and lower incisors were proclined. Lower incisor proclination would indicate the amount of correction that can be attained by orthodontics only. For Case 1, the lower incisors were severely proclined, with no present crowding. Provided we did not procline the lower incisors much more, we would be able to attain an acceptable compromise orthodontic camouflage result.

Phase I treatment consisted of a hybrid TPA-tungsten alloy appliance with 24/24 upper pre-adjusted edgewise fixed appliances with MBT prescription. Surgical exposure of the UR1 via the open technique with boding of a gold chain and orthodontic traction to the archwire was done to facilitate eruption. Retention via a bonded upper fixed retainer UR1 to UR7 was placed until Phase II treatment. Phase II treatment consisted of growth modification via an Andresen Activator with full upper and lower pre-adjusted edgewise fixed appliances (0.022” x 0.028” slot) with MBT prescription. The upper incisors were retrognathic, and the maxilla maintained the lower archform of the sagittal correction. Furthermore we expect that the incisor relationship will be maintained seen as we did not procline the lower incisors excessively to become in harmony with the lower lip. Therefore stability can be expected to be good.

The patient is aware of the need for long-term retention.
Invisalign®: clear benefits for your patients

By Vicki Vlassaki BDSc; MDSc.

S
ince the launch of the revolutionary Invisalign
orthodontic system in 1999, the removable, computer
activated, aesthetic Invisalign® aligner has gained
popularity world-wide as an alternative to traditional
fixed appliances. Invisalign® provides adult and teen patients
an aesthetic, non-invasive and precisely activated treatment
alternative for improving smile aesthetics and occlusal re-
quirements, from minor alignment to complex malocclu-
sions. Currently Invisalign® is available to patients in over
50 countries, with over 5,000 cli-
nicians trained to use the prod-
uct and over 2.6 million patients
treated or in treatment.2,3

Due in part to the digital oc-
cusal data from millions of
treated patients, Align Tech-
nology Inc. (the manufacturer
of Invisalign®) has been able
to continuously support rapid
innovation. Some improve-
ments include interactive Clin-
Check® software features, new
FDA approved aligner materi-
avals, algorithm based features
such as optimized attachments,
specifically engineered to the
tooth’s shape, size and re-
quested movement (Figure 4),
hooks and cut outs for applying
Class II and Class III mechan-
icss, power ridges for assisting
expression of root torque and
erection points for treating late
mixed dentition patients4,5 (Figure 1).

In February 2014, the newest
series of innovations “Invis-
align G5” was launched, in-
cluding an integrated me-
chanical system for treatment of
dental deep bite cases. In-
visalign® mechanics are well
suited to dental and mild skel-
etic open bite cases due to the
occlusal coverage and lack of
detrimental extrusive vertical
side effects.6,7

For this patient, the benefits of Invisalign® ClinCheck® soft-
ware planning (Table 1) with the ability to superimpose and
view degree of movement and to have the ability to program
small, precise activation in the aligners made treatment pre-
dictable in terms of vertical control and preserving peri-
odontal health.8,9 In this case, the patient would not consider
a surgical option and there was no obvious functional aetiology
for the open bite. Post treatment stability, even of open bite pa-
tients and incidence of root re-
sorption have been found to be favorable with the Invisalign
system.10

Table 1: Advantages of ClinCheck® Software

3D visualization of each planned treatment, including treatment duration for clinicians and patients.

Accurate crown and generic root programming and assessment of movement and direction of movement.

Interactive tools to design me-
chanics such as attachment choice, Class II and Class III cor-
rection features:

Clinical tool for treatment moni-
toring and motivation enhance-
tment.

Tooth movement animation may be used by colleagues in multi-disciplinary planning.

Summary

The Invisalign® system has many unique benefits to offer both patients and clinicians. Its distinct 3D ClinCheck® soft-
ware not only provides a valu-
able planning tool but it directly programs the activation of the aligners, offering for the first time, aligners designed with
multiple small and precise tooth activations engineered to simulate predictable orthodontic outcomes. The scope of related
research conducted by the manufacturer as well as by the private dental and academic communities is unique to Invis-
align® and offers significant scientific value to users, with over 500 publications and case reports around the globe. As a
result, the Invisalign® system has continually evolved to be-
come a predictable orthodontic appliance applicable to all
categories of malocclusion, including extraction and surgic-
ical treatments (9), depending largely on the treating doctor’s level of experience using Invis-
align®.

Figure 1: Class II/1, late mixed dentition patient treated with aligner features such as eruption pontics, precision hooks and button cut outs for Class II elastics and power ridges for palatal root torque

Below is a case report depicting a Class II skeletal, dental Class I, mildly crowded dental open bite case complicated by gingi-
val recession, typically difficult to treat with conventional ap-
pliances.

Case Report

The patient is a healthy 28 year old female with no history of previous orthodontic treat-
ment. Her presenting com-
plaint is “my upper 2 front teeth are crossed and the lower right tooth is twisted” (Figure 2).

Cephalometically, the patient has a dolichofacial, skeletal Class I relationship with pro-
clined upper incisors. The OPG radiograph shows the third molars are missing, previously
extracted. Root length appears normal, with no sign of patho-
logic resorption. The lower anterior segment displays aber-
rant root angulation (Figure 5).

Intra-orally, the patient dis-
plays a Class I molar and ¼ unit Class II canine relation-
ship with mild upper and lower crowding and open bite extend-
ing from right second premolar to left first premolar region. Her overbite is deficient (2.2mm) and overjet excessive (8mm).

Her arch forms are non-coincident in shape, with a narrow upper arch form due in part to palatal inclination of the upper den-
tition. There is generalized gin-
gival recession with significant recession and active inflamma-
tion involving the lower left lat-
eral incisor (Figure 4).

The treatment plan was to align and coordinate the arch forms, increase buccal crown inclina-
tion and to reduce the overjet and close the anterior open bite using relative incisor ex-
trusion (tipping back), leaving a partial curve of Spee in the lower arch due to an already
“gummy smile”. Space acquisi-
tion for resolution of crowding
and relative incisor extru-
sion would be via conservative
arch expansion (buccal crown inclination rather than bodily expansion) and computer cal-
culated inter-
proximal reduc-
tion of anterior segments. Ini-
tial periodontal treatment of the lower left inci-
sor segment and periodontal maintenance throughout treatment was prescribed. Me-
chanics selected was the Invisi-
align® system due to the desire of the patient for a high degree of aesthetics (she was married half way through treatment), excellent vertical control, ac-
curate mechanics and ability to plan-
ing of movements prior to ini-
tiating mechanics and ability to maintain a high degree of oral hygiene through treatment. A 3D ClinCheck® Plan was devel-
oped, based on PVS impressions and the Invisalign prescription form (Figures 5 & 6).

Treatment progressed well, with excellent complainer with prescribed 20-22 hour daily aligner wear. Each aligner was worn for a period of 2 weeks. Monitoring visits were sec-
ed every 6 weeks, every 5 aligners. This ensured that no more than 0.5mm of move-
ment occurred between visits so that close monitoring of den-
tal and periodontal response could be performed. The initial aligner series was 25 upper and lower aligners (U L 25), represen-
ting 12.5 months of treat-
ment. At aligner 24, attach-
ments were removed and the patient assessed for refinement (Invisalign® finishing).

Most of the treatment goals were fu-
illed, except the complete ratio-
tion of the lower right canine. (Figures 7 & 8)

A new lower PVS was taken to capture the clinical result and 4 upper and 6 lower refinement aligners were manufactured to fulfill the occlusal goals. A new generation of custom en-
 engineered attachments was now available to complete the can-
ine rotation. (Figure 8)

Final Treatment time was 16 months, with 24 of the initial 25 aligners and 4 upper and 5 lower refinement aligners worn. The occlusal goals were satisfied as well as the patient’s chief concerns. Comparison of figures 9 and 10 show that periodontal health was not only maintained but improved throughout treatment and gin-
gival inflammation reduced, especially in the lower left lat-
eral incisor region (figure 10).

Figure 2: Extra-oral views

Figure 3: ClinCheck Plan of initial occlusion and lower arch superimposition initial and final stages.

Figure 4: Pre-treatment Smile and Extra-oral view.

Figure 5: Lateral Cephalometric and OPG radiographs.

Figure 6: Extra-oral views

Figure 7: Final ClinCheck Plan stage U L 23.

Page 26

ORTHODO TRIBUNE
Dr. Vicki Vlaskalic is a practicing orthodontist in Melbourne, Australia and Clinical Instructor at the University of Melbourne, Department of Orthodontics. She has worked with the Invisalign System since the initial feasibility study in 1997 at the University of the Pacific, San Francisco, working as Assistant Professor in the Department of Orthodontics under Professor Robert Boyd.
Periodontitis, Diabetes and Smoking

By Drs Khawla Al Matroushi, Dr. Shatha Al Khatri and Professor Crawford Bain, Dubai School of Dental Medicine

Periodontal diseases have, for a half of a century, been known to be initiated by the accumulation of plaque (R). It has however been increasingly apparent in recent years that both intrinsic and extrinsic risk factors influence the progression of periodontitis. Of these the most important are Diabetes and Smoking. Since both of these factors are common in the UAE this is of particular importance to UAE dentists. It is the purpose of this paper to review the current associations between these risk factors and periodontitis, and to discuss the likely bi-directional relationship between management of periodontitis and the control of diabetes.

Periodontitis and Diabetes

Diabetes mellitus occurs when the level of sugar (glucose) in the blood becomes higher than normal. There are two main types of diabetes. In type 1 diabetes, the body stops making insulin and the blood sugar (glucose) level becomes very high (R). Type 2 diabetes, also called adult-onset diabetes and non-insulin-dependent diabetes, is a chronic condition caused by high levels of glucose (sugar) in the blood. Although some people can overcome the symptoms by losing weight and following a healthy diet and exercise plan, most people with type 2 diabetes will have it for life (R).

Both diabetes and periodontitis are chronic diseases. Diabetes has many adverse effects on the periodontium, and conversely periodontitis may have deleterious effects further aggravating the complications of diabetes. The potential common pathophysiologic pathways include those associated with inflammation, altered host responses, altered tissue homeostasis, and insulin resistance. A recent study also showed that scaling, polishing and root planning of the periodontal tissues can lower blood sugar levels potentially offering a practical means of reducing the numbers who develop full type 2 diabetes (R).

Diabetes has many adverse effects on the periodontium, including decreased collagen turnover, impaired neutrophil function, and increased bacterial destruction. Neutrophil chemotaxis and phagocytic activities are compromised in diabetic patients, which can lead to reduced bacterial killing and enhanced periodontal destruction. Inflammation is exaggerated in the presence of diabetes, insulin resistance, and hyperglycemia (R).

Nelms et al (R) examined 1500 diabetic patients; the prevalence of periodontal disease in these patients was 86.8%, significantly higher than the general population. By the early 1990s periodontitis was referred to as the "sixth complication of diabetes", and in 2005 the ADA formally acknowledged that periodontal disease is more often found in diabetics(R). Epstein (R) demonstrated that essentially all the aspects of bone growth and mineralization are diminished in the absence of insulin i.e. hyperglycemia. Vascular changes also increase with increase in blood glucose levels (Oli- ver and Tervonen) (R).

Periodontitis and Smoking

Second to bacterial plaque, smoking is the strongest of the modifiable risk factors for periodontal disease. Smokers harbor a higher prevalence of potential periodontal pathogens, and smoking impairs various aspects of immune responses, including neutrophil function, antibody production, fibroblast activities, vascular factors and inflammatory mediator production.

Smokers have a greater experience of gingival inflammation and bleeding on probing in comparison with non-smokers(R). gingival inflammation and bleeding on probing in the presence of plaque accumulation when compared with non-smokers(R).

Smoking has been associated with a two- to eight-fold increased risk for periodontal attachment and/or bone loss, depending on the definition of disease severity and smoking dose.

One of the largest epidemiological studies reporting an association between smoking and periodontitis included 12,329 U.S. adults 20 years and older. In this study, current smokers were four times as likely to have periodontitis compared to non-smokers after adjusting for age, race ethnicity, income, and educational level. Heavy smokers (≥ 51 cigarettes per day) using a stricter definition of periodontitis (mean whole mouth attachment loss of ≥ 4mm), the adjusted odds ratio was increased to 25.64 among smokers aged 50 years or more (R).

Longitudinal studies have demonstrated that young individuals smoking more than 15 cigarettes per day showed the highest risk for tooth loss (R).

Smokers have a greater extent of colonization by periodontal pathogens than non-smokers or former smokers, particularly at shallow sites (pocket depth ≥ 4mm) with no differences between smokers, former smokers, and non-smokers in pockets ≤ 4mm (R). This colonization, along with low gingival blood flow may lead to an increased prevalence of periodontal breakdown.

Smoking exerts a major effect on the protecive elements of the immune response, resulting in an increase in the extent and severity of periodontal destruction. Neutrophils obtained from peripheral blood or saliva of smokers, have been shown to demonstrate functional alterations in chemotaxis, phagocytosis, and the oxidative burst. Smoking has been shown to impact the chemotaxis and phagocytosis of neutrophils obtained from the oral cavity, and in vitro studies of the effects of tobacco products on neutrophils have shown detrimental effects on cell movement and the oxidative burst (R). Smoking are major areas of research interest at Dubai School of Dental Medicine.

The relationships between Periodontitis, Diabetes and Smoking are major areas of research interest at Dubai School of Dental Medicine.

About the author

Drs. Khawla Al Matroushi and Shatha Al Khatri are first year residents at the Dubai School of Dental Medicine (DSDM). Periodontics MSc programme located in Dubai Healthcare City (DHCC). Dr. Crawford Bain is Professor of Periodontology, and Director of the MSc in Periodontics at Dubai School of Dental Medicine (DSDM) located in Dubai Healthcare City (DHCC).

Dubai Dental Clinic provides comprehensive treatment in all specialized dental needs including:

Orthodontics | Periodontal Treatment | Esthetic Dentistry
Dental Implants | Crowns | Pediatric Dentistry | Root Canals
Oral Surgery | Teeth Whitening

Dubai Dental Clinic provides comprehensive treatment in all specialized dental needs including:

Orthodontics | Periodontal Treatment | Esthetic Dentistry
Dental Implants | Crowns | Pediatric Dentistry | Root Canals
Oral Surgery | Teeth Whitening

For more information or to make an appointment call us on 800-DENTAL (800-336825) or 04-4248777
Get to Know the IFDH

By JoAnn R. Gurenlian, RDH, PhD

T

he International Federation of Dental Hygienists (IFDH) is an organization designed to represent the interests of dental hygienists worldwide. Originally founded in 1975 by the International Liaison Committee on Dental Hygiene, the organization was formalized in 1986 in Oslo, Norway. Since that time, the IFDH has functioned as an international, non-governmental, non-profit organization that unites dental hygiene associations from around the world in the common cause of promoting oral health.

The purposes of the IFDH include the following:
• Safeguard and defend the interests of the profession of dental hygiene and represent and advance the profession of dental hygiene.
• Promote professional alliances with its association members as well as with other associations, federations and organizations whose objectives are similar.
• Promote and coordinate the exchange of knowledge and information about the profession, its education, and its practice.
• Promote access to quality preventive oral health services.
• Increase public awareness that oral disease can be prevented through proven regimens.
• Understand and discuss issues pertaining to dental hygiene.

Currently, the IFDH consists of 26 member countries. These include: Australia, Austria, Canada, Denmark, Fiji, Finland, Germany, Ireland, Israel, Italy, Japan, Korea, Latvia, Nepal, Netherlands, New Zealand, Norway, Puerto Rico, Russia, South Africa, Spain, Sweden, Switzerland, United Kingdom, and United States of America. Individual dental hygienists, students enrolled in accredited dental hygiene education programs, and other professional organizations and health care providers may join the IFDH.

The IFDH endeavors to provide online resources for dental hygiene colleagues. Our website, www.ifdh.org, provides information about the process of seeking employment in member countries, research and education, national and international meetings of interest, and partnerships designed to improve the oral health of the public.

One of our exciting new partnerships is with the Global Child Dental Fund. We are working together to support a social responsibility award focused on improving the oral health of disadvantaged children. This volunteer project is designed to recognize, on an annual basis, dental hygienists and student dental hygienists who participate in a volunteering project which benefits disadvantaged children, mainly, but not exclusively, in low- and middle-income countries. Any dental hygienist who is either an Individual or Student member of the IFDH, or an IFDH Country Member is eligible to apply for the award. Applications are available through www.gcf.org. Project proposals are due by June 1, 2014 and awards will be announced on September 30, 2014. One winner will receive a cash prize of $5000 to implement the project, two runner-up prizes of $3000 each.

In addition, the IFDH is investigating a partnership with “TestDIne”. This program is an innovative way to promote improved oral home care by texting reminder messages to brush and floss daily. Additional educational information is offered concerning oral care including saliva and the pH of the mouth, heart disease and oral health, stress, and diabetes. There is an app for apps, i pad minis, and iPhone 5s as well as through ITunes at http://bit.ly/ccc9H20os. id=5797806527#n=8.

Every three years, the IFDH hosts an International Symposium on Dental Hygiene, providing an opportunity to network and learn the latest research and technologies supporting the growth of the profession. The next scientific symposium will be held from June 23 to 25, 2016 in Basel, Switzerland. For more information about this meeting, visit http://ifdh2016.dentalhygienists.ch.

We hope you will join us as we work together to improve the oral health of the public and support our profession around the globe!

Contact Information
JoAnn R. Gurenlian, RDH, PhD, is President of the International Federation of Dental Hygienists and Professor and Graduate Program Director of the Department of Dental Hygiene, Division of Health Sciences, of Idaho State University, jurg@idaho.net

Hands on course
Periodontal Instrumentation
Prof. Mary Rose Pinckell Boglione
10 May 2014 Jumeirah Beach Hotel, Dubai
Launch of Dental Hygienists Supplement in the Dental Tribune Middle East

By Victoria Wilson

In Partnership with

Victoria Wilson, Dental Hygiene Therapist

Celebrating World Oral Health Day
20th March 2014

By Dr. Maimona A. Rahim, DDS

UBAI, UAE: It is my pleasure to announce the launch of a new Supplement in the Dental Tribune Middle East targeted completely to Dental Hygienists. It is an extremely exciting time for Hygienists in this region, as we continue to gain more recognition for our skills and qualifications. Dental professionals are increasingly becoming aware of our key role within the dental practice, both as a valued team member in the delivery of complete dental care, and in the promotion and restoration of our patients’ oral health.

In 1906, Alfred Fones, an American dentist from Bridgeport, Connecticut, who is also the founder of the Dental Hygienist profession, had an important vision. He wanted to create a new paradigm for dentistry that focused on prevention and promotion of oral health instead of simply tooth loss and disease. Alfred's cousin, Irene New, became the first known Dental Hygienist and in 1915 they opened the first dental Hygiene School.

After qualifying as a Dental Hygienist & Dental Therapist from the Eastman Dental Hospital in the U.K over 10 years ago, I became acutely aware of the public’s lack of knowledge as to what we do within the dental clinic. At that time, a good deal of further education was also required to educate people on our role within the community. Ten years has passed and it would now be difficult to find a clinic in the U.K without a Hygienist. I can also see that this is the direction that clinics are taking in the UAE. The prevention and education that Hygienists provide is fundamental to all dental treatments.

The question still remains in the Middle East - does every member of the dental team completely understand what the Hygienist can bring to the clinic? The following list can help provide an insight into our skills and valuable contributions. The Dental Hygienist will:

- Provide dental hygiene care to patients.
- Plan the delivery of care for patients to improve and maintain their periodontal health.
- Obtain and evaluate a detailed dental and medical history from patients.
- Provide periodontal examinations and charting and use indices to screen and monitor periodontal disease.
- Provide preventive oral care to patients and liaise with dentists and patients on the treatment of caries, periodontal disease and tooth wear, as well as replacement of existing deficient restorative treatment.
- Undertake supra and subgingival scaling and root debridement using manual and powered instruments and administer appropriate antimicrobial therapy to manage plaque related diseases.
- Apply topical treatments and fissure sealants.
- Offer patients advice on how to quit smoking.
- Take, process and interpret various film views used in general dental practice.
- Take impressions.
- Identify anatomical features, recognize abnormalities and interpret common pathology as well as carry out oral cancer screening.
- Refer patients to other dental professionals and discuss opinions for further dental treatment.
- Perform Tooth Whitening procedures to the prescription.

The Dental Hygienist is ultimately a great communicator within the team. He/she motivates patients and helps them to make the right decisions for long-term dental health and acts to build the practice. Successful periodontal therapy, and the maintenance of a healthy periodontium is the basis of all good restorative dentistry.

The number of Dental Hygienists in the region is steadily growing, and thanks to the Dental Tribune Middle East, we now have a platform to reach out and connect further with the dental profession.
An interview with Tuomas Lokki

Tuomas Lokki (TL): Absolutely. However, we are at the very beginning of this transformation. There are many new applications on the horizon. CAD/CAM technology is the entry point for many dental offices converting to digital processes and will be one of the primary technologies in the dental arena in the future. Dental laboratories are, in many cases, leaps ahead of the dental office. I see huge growth opportunities for laboratories in terms of complex and specialty cases because they are perfectly poised to offer dentists expert guidance.

By Inside Dental Technology

Inside Dental Technology (IDT): Do you believe that CAD/CAM technology is here to stay in the dental profession?

Tuomas Lokki (TL): New digital impression technologies and software will allow dentists to design restorative solutions and services for their dentist partners. Modular systems, such as the Planmeca Plancan digital restorative system, allow that flexibility for growth. You can start with the scan-only module and then move into the scan and design system, or go all in to full production milling.

IDT: How can Planmeca address the need for laboratories to use those tools?

TL: We have only begun to see the impact of the digital impression and CAD/CAM revolution. I would like to invite you all to challenge the manufacturing community with your future needs even more exciting.

Published with the permission of Agegis Publications, LLC – Inside Dental Technology.

How do you see the relationship between the dentist and laboratory evolving?

New digital impression technologies will improve the relationship between the laboratory and the dentist. The proliferation of this technology, as well as advancements in dental materials and equipment, will continue to make open and consistent communication between the dentist and dental technician absolutely crucial. New software, such as Planmeca’s Romexis, will facilitate this communication through better data management and open architecture, allowing for the easy import and export of digital files and any system, and acting as the conduit that brings all the case data together. Additionally, digital impression technologies will open new avenues for laboratories to perform more complicated and time-saving restorations in less time.

What are some of the critical factors that laboratories need to consider when working with their dentist partners?

Communication is critical to achieving the best results. Today’s technology opens the door to online communication and I would encourage laboratories to use those tools to design restorative solutions in cooperation with their dentists. As these technologies continue to evolve and become more commonplace, the relationship between dentists and dental technicians will allow for increased productivity for both sides.

IDT: Are there any recent advancements in laboratories to complement the restorative market?

TL: Teeth continue to age. The complexity of implants and the base continues to age. The complexity of implants and the treatment plans, on one platform. This technology helps laboratories create implant-based restorations faster and better with guidance from oral surgeons. Also, due to increasing regulatory controls, dental laboratories that offer implants and implant abutments are likely to face increased regulatory review. This new level of compliance will require dentists to do due diligence in ensuring that they work with dental laboratories that can attest to having quality systems and good manufacturing practices in place to produce such restorations.

What is your position on the expanding role of the laboratory as it relates to partnering with dental technicians in the implant planning process?

Digital impressions as they relate to dental implants, although a small piece of the restorative market, are growing 15% to 17% annually. We expect this trend to increase even more as the population base continues to age. The complexity of implants and the communication bridge that digital impressions provide requires an enhanced service level interface between dentists and dental technicians. Our Planmeca Romexis software platform provides tools that enable the dental team to visualize and share three-dimensional files, such as CBCT scans and implant treatment plans, on one platform. This technology helps laboratories plan and engage in the implant planning process.

IDT: What is your position on the exporting of digital files from the digital impression and digital restorative systems?

TL: The Planmeca platform provides tools that enable the dental team to communicate with each other. Digital communications, as well as advancements in dental materials and equipment, will continue to make open and consistent communication between the dentist and dental technician absolutely crucial. New software, such as Planmeca’s Romexis, will facilitate this communication through better data management and open architecture, allowing for the easy import and export of digital files and any system, and acting as the conduit that brings all the case data together. Additionally, digital impression technologies will open new avenues for laboratories to perform more complicated and time-saving restorations in less time.

What is your vision on how the dental industry will look in 5 years?

CAD/CAM will play an increasingly important role in the dental industry. Digital impressions in combination with 3D imaging will become the standard of care in most practices. The use of combined datasets has opened new avenues that pave the way to new applications and has created new opportunities for dental laboratories. We have only begun to see the impact of the digital impression and CAD/CAM revolution. I would like to invite you all to challenge the manufacturing community with your future needs even more exciting.

Contact Information

Tuomas Lokki is the President of E4D Technologies in Richard- son, TX, and Vice President of Marketing and Sales Planmeca Oy, Finland.
Madinat Jumeirah Resort
Dubai, UAE • May 7-9, 2014

REGISTRATION
Ralph Rmeily
dubai2014@biohorizons.com
Tel #: +1 205-986-1235
Sirona’s international success: Russian clinic buys the 40,000th C8+ treatment center

By Sirona

SALZBURG, Austria: Products “Made in Germany” have long been sought after around the world. This is also reflected in the international sales figures for the Sirona C8s. The treatment center combines high quality with timeless design. The 40,000th C8 treatment center recently rolled off the production line at Sirona in Bensheim, the world’s largest production site in the dental industry – making this unit, which was designed for the global market, even more successful than the classic M1. The milestone unit and three other C8s centers were purchased by the Kremllovskaya Stomatologia dental clinic in Ryazan, Russia. “We have had very good experience with Sirona equipment. The company’s treatment centers are of a very high quality and are known for their reliability, long functional life, and support features for ergonomic patient positioning that prevent back strain while working,” said clinic director Andrey Archipenko, explaining his decision. “Made in Germany” is always a key quality factor around the world – especially in Eastern European, Latin American, Asian, and Arabian markets. The 50,000th C8s treatment center was sold to a buyer in China in 2011.

Easy operation and timeless design

Because of the wide range of possible applications, the C8s units can be found in practices, clinics, and universities in over 100 countries. The sturdy construction and intuitive operation make them ideally suited for ongoing use in clinical practice routine as well as for teaching. In addition to its top quality, the timeless design of the C8s gives it the high-end look. Users can choose between various finishes and three color schemes for the upholstery – elegant, natural, and active. Director Archipenko chose a premium decor in trendy orchid that blends seamlessly into his newly refurbished clinic. You can use the online C+ configurator to determine which color scheme best matches your facilities before purchasing. Dentists can design their treatment rooms virtually to get some initial assistance in selecting colors.

Optional features

Dentists can configure the C8s individually depending on their personal preferences and local conditions. The range of optional features has been continually adapted in response to technical developments and sets new trends. For example, optional features include a brushless motor (BL ISO C), LEDview treatment lamp, and an intraoral camera system. Dentists who want to provide their patients with an especially comfortable atmosphere can also have their C8s treatment center equipped with the new lounge upholstery, which has a premium cushion design, a soft, elegant feel, and an attractive double-seam look.

Exemplary ergonomics

With its serial ErgoMotion system, Sirona also ensures patients’ comfort and gives the treatment team optimal access to the mouth. At the same time, the individual operating elements are arranged to allow the dentist to work without back strain. The many options, the outstanding workmanship, and the timeless design make the C8s a treatment center that is still very popular today – 40,000 units sold – with dentists all around the world.
AAID president-elect named vice dean at Harvard School of Dental Medicine

NEW YORK, USA: After an extensive nationwide search, AAID President-Elect John Da Silva, DMD, MPH, ScM, AFAAD, has been named vice dean at Harvard School of Dental Medicine. Dean Bruce Donoff stated that Da Silva’s “extensive institutional knowledge and experience in [HSDM’s] three focal areas — research, education and patient care — will be of great value as HSDM continues its strategic planning process.”

Da Silva serves on the board of trustees of the American Academy of Implant Dentistry and is currently the president elect. He is also chair of the Bylaws Committee and serves on the Education Oversight and Nominating committees. He has received widespread recognition during his academic career, including being named an honored fellow of the American Academy of Implant Dentistry and receiving the HSDM Distinguished Junior Faculty Award.

He has published numerous journal articles and lectured nationwide. Da Silva has made major contributions in research and the area of color science. He has also been involved in curricular changes to improve content on substance-abuse screening and brief interventions.

Da Silva was born in New York City and attended Williams College as an undergraduate. He received his dental degree from the Harvard School of Dental Medicine and his MPH degree from the Harvard School of Public Health. He later returned to the School of Public Health and received a ScM in health policy and management.

Da Silva completed specialty training in implant dentistry and prosthodontics at HSDM in 1992. He has been a faculty member there since 1995.
Planmeca makes CAD/CAM easier than ever

By Petri Kajander

Planmeca’s open-interface-based CAD/CAM solutions introduce, above all, quality, cost-efficiency and precision to the daily workflow at dental clinics or laboratories. Petri Kajander, Product Manager for Planmeca’s CAD/CAM solutions, explains the revolutionary features of these new products.

State-of-the-art solutions for dentists

Planmeca PlanScan® – super-fast intraoral scanner

The new Planmeca PlanScan® is a digital and powder-free intraoral scanner that scans the patient’s dentition quickly and accurately. The scanner produces real-time digital impressions from one- tofull-arch scans. Thanks to the open STL format, the scanned files can be sent to any dental laboratory for design work. This is the world’s first dental unit integrated intraoral scanner that can also be connected to a laptop.

“The scanner has only one cable, so it is extremely easy to move from one place to another, for example between different treatment rooms or clinics”, says Product Manager Petri Kajander. “In addition, the scanner is delivered with a laptop, so the device can be flexibly shared between different users. In other words, Planmeca PlanScan offers value for your investment: it is not a device for just one dentist but can be used by the entire clinic.”

The scanner utilises blue laser technique. It projects a pattern on the surface of the teeth and then analyses it from different directions while calculating distances. In this way, the device is able to calculate a model that is extremely accurate. “You can view the result as a real-time video image. The video recording and the dental surface identification algorithm make the device extremely flexible to use. Thanks to these features, you can pause the scanning at any time and continue later on at any point from where the data is already available.”

The scanner includes a range of exchangeable tips in various sizes, the smallest of these facilitating access to the posterior parts, particularly with small children and trauma patients. The tips can be autoclaved for efficient infection control. In addition, the scanner is extremely durable since it has no other moving parts inside except for a fan that removes warm air. “Thus, the device stays calibrated and is not subject to mechanical wear”, explains Kajander.

Planmeca PlanCAD® Easy – efficient design tool for prosthetics

Planmeca also offers dentists a new kind of open software solution for 3D design. Planmeca PlanCAD® Easy is seamlessly integrated in Planmeca Romexis® software and it is a user-friendly design tool for the design of inlays, onlays, veneers, crowns and bridges.

“The software runs on the so-called floating licence basis. This means that it is not tied to just one computer or workstation. It allows you to use the software on the Planmeca Romexis server. In this way, the scanning station can be used only for scanning, while another workstation is used for the actual design work. This is a truly unique feature, which allows work to be continued straight away on another computer, while the scanner is freed for more productive operation”, says Kajander.

Every dentist designing his or her own prosthetic works will also face cases that require assistance from a dental laboratory. For this reason, Planmeca’s system utilises an open STL file format that allows the work to be sent immediately to a partner via the Planmeca Romexis® Cloud service.

Since Planmeca PlanCAD Easy is integrated in Planmeca Romexis software, soft tissue scans can also be conveniently paired with the patient’s CBCT image. This combined data provides valuable information for im-